References¶
Optimality conditions and numerical tolerances in QP solvers, S. Caron, 2022.
QPALM: A Newton-type Proximal Augmented Lagrangian Method for Quadratic Programs, B. Hermans, A. Themelis and P. Patrinos. Mathematical Programming Computation, 2022, vol. 14, no 3, p. 497-541.
PROX-QP: Yet another Quadratic Programming Solver for Robotics and beyond, A. Bambade, S. El-Kazdadi, A. Taylor and J. Carpentier. Robotics: Science and Systems. 2022.
Operator splitting for a homogeneous embedding of the linear complementarity problem, B. O’Donoghue. SIAM Journal on Optimization, 2021, vol. 31, no 3, p. 1999-2023.
HPIPM: a high-performance quadratic programming framework for model predictive control, G. Frison and M. Diehl. IFAC-PapersOnline, 2020, vol. 53, no 2, p. 6563-6569.
OSQP: An Operator Splitting Solver for Quadratic Programs, B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. Mathematical Programming Computation, 2020, vol. 12, no 4, p. 637-672.
qpSWIFT: A real-time sparse quadratic program solver for robotic applications, A. G. Pandala, Y. Ding and H. W. Park. IEEE Robotics and Automation Letters, 2019, vol. 4, no 4, p. 3355-3362.
Parallelizing the dual revised simplex method. Q. Huangfu and J. Hall. Mathematical Programming Computation, 2018, vol. 10, no 1, p. 119-142.
qpOASES: A parametric active-set algorithm for quadratic programming, H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock and M. Diehl. Mathematical Programming Computation, 2014, vol. 6, no 4, p. 327-363.
ECOS: An SOCP solver for embedded systems, A. Domahidi, E. Chu and S. Boyd. European Control Conference. IEEE, 2013. p. 3071-3076.
The CVXOPT linear and quadratic cone program solvers, L. Vandenberghe. 2010.
A numerically stable dual method for solving strictly convex quadratic programs. D. Goldfarb and A. Idnani. Mathematical Programming, vol. 27, p. 1-33.
A dual active-set solver for embedded quadratic programming using recursive LDL updates, D. Arnström, A. Bemporad and D. Axehill. IEEE Transactions on Automatic Control, 2022, 67, no. 8 p. 4362-4369.
PIQP: A Proximal Interior-Point Quadratic Programming Solver, R. Schwan, Y. Jiang, D. Kuhn, C.N. Jones. ArXiv, 2023.
On the Differentiability of the Primal-Dual Interior-Point Method, K. Tracy and Z. Manchester. ArXiv, 2024.